A dynamic origin for the global asymmetry of lunar mare basalts
نویسندگان
چکیده
We propose that the hemispheric asymmetry (Fig. 1) of mare basalts may be explained as a result of hydrodynamic instabilities associated with a layer of mixed ilmenite-rich cumulates (IC) and olivine^orthopyroxene (OPx) overlying a metallic core. This mixed layer (MIC) should form shortly after the solidification of the magma ocean (P.C. Hess and E.M. Parmentier, Earth Planet. Sci. Lett. 134 (1995) 501^514) because of gravitational differentiation of chemically dense IC material that is expected to form below the anorthositic crust in the final stages of magma ocean crystallization (A.E. Ringwood and S.E. Kesson, Proc. Lunar Planet. Sci. Conf. 7 (1976) 1697^1722). IC material is rich in heat producing elements, and thermal expansion due to radiogenic heating causes the MIC layer to become less dense than overlying mantle. The time required for the MIC layer to become thermally buoyant may explain a delay of mare volcanism until about 500 Ma after solidification of the magma ocean. Our analyses of the resulting Rayleigh^Taylor instability and numerical modeling of thermo-chemical convection show that the instabilities produce spherical harmonic degree 1 thermal and compositional structure if a lunar metallic core is sufficiently small, less than 250 km in radius. ß 2000 Elsevier Science B.V. All rights reserved.
منابع مشابه
Searching for high alumina mare basalts using Clementine UVVIS and Lunar Prospector GRS data: Mare Fecunditatis and Mare Imbrium
a r t i c l e i n f o a b s t r a c t In the context of sample evidence alone, the high-alumina (HA) basalts appear to be an unique, and rare variety of mare basalt. In addition to their distinct chemistry, radiometric dating reveals these basalts to be among the oldest sampled mare basalts. Yet, HA basalts were sampled by four missions spanning a lateral range of ∼2400 km, with ages demonstrat...
متن کاملMare Basalt Fragments in Lunar Highlands Meteorites: Connecting Measured Ti Abundances with Orbital
Lunar highland meteorites contain small proportions of mare basalt fragments, which are important for defining lunar basalts in areas not visited by Apollo/Luna. We analyzed seven mare basalt fragments from three highland meteorites, and retrieved the Ti contents of their parent magmas from core pyroxene compositions. The analyzed clasts span the range of VLT and low-Ti, basalts in Apollo & Lun...
متن کاملWorkshop on Lunar Volcanic Glasses: Scientific and Resource Potential
Origin of Lunar Basalts: A Geophysical Interpretation J. Arkani-Hamed Lunar Pyroclastic Soils of the Apollo 17 Double Drive Tube 74001/2 A. Basu, D. S. McKay, and S. J. Wentworth Lunar Explosive Volcanism: The Remote Sensing Perspective C. R. Coombs and B. R. Hawke The Optimal Lunar Resource: Ilmenite-rich Regional Pyroclastic Deposits C. R. Coombs, B. R. Hawke, and B. Clark Pyroclastic Volcani...
متن کاملDistinguishing high-alumina mare basalts using Clementine UVVIS and Lunar Prospector GRS data: Mare Moscoviense and Mare Nectaris
[1] High-alumina (HA) mare basalts are a unique group of the lunar sample collection. Sample geochemistry indicates that these basalts are derived from sources composed of late-stage cumulates from the Lunar Magma Ocean (LMO). Their aluminous nature suggests their sources contained significant plagioclase, which has implications regarding the efficiency of plagioclase separation from earlier fo...
متن کاملOxygen isotope constraints on the origin and differentiation of the Moon
We report new high-precision laser fluorination three-isotope oxygen data for lunar materials. Terrestrial silicates with a range of δO values (−0.5 to 22.9‰) were analyzed to independently determine the slope of the terrestrial fractionation line (TFL; λ=0.5259±0.0008; 95% confidence level). This new TFL determination allows direct comparison of lunar oxygen isotope systematics with those of E...
متن کامل